YPR-ángulos de alineación para arreglo de cometas de captación de energía eólica: α,β,γ-coeficientes de control y mantenimiento de patrones de flujo regenerativos
DOI:
https://doi.org/10.18004/ucsa/2409-8752/2023.010.03.003%20%20Palabras clave:
Arreglo de cometas eólicas inteligente, ángulos de alineación YPR, algoritmos adaptativos LMS para hardware en VHDL, trayectoria sobre curvas cíclicas, adaptación de infraestructura energéticaResumen
Esta investigación propone maximizar la eficiencia de un sistema captador de energía, a través de cometas eólicas incorporando una técnica de remediación del patrón de flujo, para el restablecimiento de las condiciones ambientales. El método de diseño plantea un modelado matemático en VHDL para los ángulos de alineación (YPR: yaw, pitch, roll) del arreglo de captadores eólicos, para establecer una tecnología cognitiva de actualización del sistema, minimizando los componentes hardware para el control activo de flujo y disminuyendo el impacto ambiental de los aerogeneradores. Se obtiene como resultado las ecuaciones de soporte en función de coeficientes de optimización α,β,γ del sistema eólico, considerando trayectorias sobre curvas cíclicas y transmisión por levitación magnética, para el control, mantenimiento y reconfiguración de patrones de flujo regenerativo. Esto permite concluir acerca de la importancia de diseñar mecanismos de remediación como patrones de vórtices a partir del control de ángulos de salida del captador eólico, en un compromiso por obtener un sistema sostenible.
Descargas
Citas
Argatov, I., Rautakorpi, P., Silvennoinen, R. (2009). Estimation of the mechanical energy output of the kite wind generator. Renewable Energy, 34(6): 1525-1532. https://doi.org/10.1016/j.renene.2008.11.001
Itaipu. (2016). Atlas del potencial energético solar y eólico del Paraguay. Asunción: Parque Tecnológico Itaipu Binacional. https://www.ssme.gov.py/vmme/pdf/publicaciones/AtlaspotenenergSolarEolicoPy.pdf
Brandenberger, R. Graviton to photon conversion via parametric resonance. Physics of the Dark Universe, 2023, DOI. https://doi.org/10.1016/j.dark.2023.101202
Dou, B., Qu, T., Lei, L., & Zeng, P. (2020). Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model. Energy, 209, 118415. https://doi.org/10.1016/j.energy.2020.118415
González, A., & Hinojosa, J. (2019). Study of the influence of protuberances in the trailing edge of airfoils and determination of their aerodynamic efficiency through CFD using Ansys Fluent. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 35(3), 1-11. https://dialnet.unirioja.es/servlet/articulo?codigo=7058330
Li, Z., & Yang, X. (2021). Large-eddy simulation on the similarity between wakes of wind turbines with different yaw angles. Journal of Fluid Mechanics, 921, A11. DOI: https://doi.org/10.1017/jfm.2021.495
López, A. C., Parra, H. G., & Guacaneme, J. A. (2023). Análisis de torque en turbinas eólicas con generadores de vórtice y variaciones de temperatura mediante volúmenes finitos. Información tecnológica, 34(3), 11-20. http://dx.doi.org/10.4067/S0718-07642023000300011
Mansi, B., Nachiket, S., Sheikh, A., Sunny, K., & Kazi, F. (2021). Parameter Estimator based Feedback Linearization Control strategy of Magnetic Levitation System. In 2021 31st Australasian Universities Power Engineering Conference (AUPEC), 1-6. IEEE. https://doi.org/10.1109/AUPEC52110.2021.9597715
Matlab, 2023. Diseñar redes neuronales de retroalimentación NARX para series de tiempo aplicado a control de levitación magnética. Disponible en: https://la.mathworks.com/help/deeplearning/ug/design-time-series-narx-feedback-neural-networks.html
Ozbay, A., Tian, W., Yang, Z., & Hu, H. (2012). Interference of wind turbines with different yaw angles of the upstream wind turbine. In 42nd AIAA fluid dynamics conference and exhibit, 2719. https://doi.org/10.2514/6.2012-2719
Palacios-Pereira, F., & Ayala-Silva, M. E. (2023). Diseño de sistema de control de ángulo pitch en aerogeneradores mediante control pi adaptativo por lógica difusa. Revista Científica de la UCSA, 10(1), 91-114. https://doi.org/10.18004/ucsa/2409-8752/2023.010.01.091
Primero, M. F. L. Y., & Uziel, R. C. (2017). Modelo cinemático de reductor cicloidal magnético. Ingeniería Mecánica. Tecnología y Desarrollo, 6(1), 25-29. https://www.redalyc.org/articulo.oa?id=76854729004
Rivarolo, M., Freda, A., & Traverso, A. (2020). Test campaign and application of a small-scale ducted wind turbine with analysis of yaw angle influence. Applied Energy, 279, 115850. https://doi.org/10.1016/j.apenergy.2020.115850
Sandoval-Ruiz, C. (2023). Kirigami, estructuras geométricas fractales y ondas de luz. Revista REC Perspectiva, 21(1): 44-58. https://produccioncientificaluz.org/index.php/perspectiva/article/view/40438
Sandoval-Ruiz, C. (2023). Biomimética Aplicada a Modelos de Sistemas de Energías Renovables Reconfigurables, basados en Estructuras Autosimilares. Revista Técnica Facultad de Ingeniería Universidad del Zulia, 46(1): e234602. DOI: https://doi.org/10.22209/rt.v46a02
Sandoval-Ruiz, C. (2023). Modelo de optimización de arreglos de cometas captadoras de energías sostenibles. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 46 (2).
Sandoval-Ruiz, C. (2022). Wind Turbine with Configurable Feedback Scheme for Minimal Environmental Impact and Maximum Efficiency. Revista UCT, 26(113), 123-136. https://doi.org/10.47460/uct.v26i113.578
Sandoval-Ruiz, C. (2021). Fractal Mathematical over Extended Finite Fields Fp[x]/(f(x)). Proyecciones Journal of Mathematics, 40(3): 731-742. https://doi.org/10.22199/issn.0717-6279-4322
Sandoval-Ruiz, C. (2021). Smart systems for the protection of ecosystems, flora and fauna. Revista UCT , 25(110): 138-154. https://doi.org/10.47460/uct.v25i110.486
Sandoval-Ruiz, C. (2021). Laboratorio de Energías Renovables y Aplicaciones Ambientales. Revista Ciencia e Ingeniería, 42(2): 169-178. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/17006
Sandoval-Ruiz, C. (2021). LFSR Optimization Model based on the Adaptive Coefficients method for ERNC Reconfigurable Systems. Ingeniare, 29(4): 743-766. http://dx.doi.org/10.4067/S0718-33052021000400743
Sandoval-Ruiz, C. (2020). Proyecto Cometa Solar - CS para optimización de Sistema Fotovoltaicos. Revista UCT, 24(100): 74-87. https://uctunexpo.autanabooks.com/index.php/uct/article/view/307/549
Sandoval-Ruiz, C. (2020). LFSR-Fractal ANN Model applied in R-IEDs for Smart Energy. IEEE Latin America Transactions, 18(4): 677-686. http://dx.doi.org/10.1109/TLA.2020.9082210
Sandoval-Ruiz, C. (2019). Modelo VHDL de Control Neuronal sobre tecnología FPGA orientado a Aplicaciones Sostenibles. Ingeniare, 27(3), 383-395. http://dx.doi.org/10.4067/S0718-33052019000300383
Sandoval, C., Velazco, K., & Díaz, J. (2008). Accionamiento eléctrico de sistemas dinámicos a través de criterios de control óptimo. Ingeniería e Investigación, 28(2), 66-71. https://www.redalyc.org/pdf/643/64328210.pdf
Vahidi, D., & Porté-Agel, F. (2022). A new streamwise scaling for wind turbine wake modeling in the atmospheric boundary layer. Energies, 15(24), 9477. http://dx.doi.org/10.3390/es15249477
Vizcaino, I. (2019). Rodamiento magnético aplicado a un aerogenerador de flujo axial.
Wu, H., Wang, Z., & Hu, Y. (2010). Study on magnetic levitation wind turbine for vertical type and low wind speed. In 2010 Asia-Pacific Power and Energy Engineering Conference (pp. 1-4). IEEE. https://ieeexplore.ieee.org/document/5448476
Yang, J., Wang, L., Song, D., Huang, C., Huang, L. y Wang, J. (2022). Incorporación de los impactos ambientales en el diagnóstico de cambio de punto cero del ángulo de guiñada de las turbinas eólicas. Energía, 238, 121762. https://doi.org/10.1016/j.energy.2021.121762
Zhang, Y., Li, Z., Liu, X., Sotiropoulos, F., & Yang, X. (2023). Turbulence in waked wind turbine wakes: Similarity and empirical formulae. Renewable Energy, 209, 27-41. http://dx.doi.org/10.1016/j.renene.2023.03.068
Zhang, X., et.al. (2021). Kirigami Engineering-Nanoscale Structures Exhibiting a Range of Controllable 3D Configurations. Advanced Materials, 33(5), 2005275. https://doi.org/10.1002/adma.202005275