YPR-alignment angles for wind energy harvesting kite arrangement: α,β,γ-coefficients for control and maintenance of regenerative flow patterns

Authors

DOI:

https://doi.org/10.18004/ucsa/2409-8752/2023.010.03.003%20%20

Keywords:

Intelligent wind kite array, YPR alignment angles, LMS adaptive algorithms for VHDL hardware, trajectory on cyclic curves, energy infrastructure adaptation

Abstract

This research proposes to maximize the efficiency of an energy capture system, through wind kites incorporating a flow pattern remediation technique, for the restoration of environmental conditions. The design method proposes a mathematical modeling in VHDL for the alignment angles (YPR: yaw, pitch, roll) of the wind collector array, to establish a cognitive system update technology, minimizing hardware components for active flow control. and reducing the environmental impact of wind turbines. The support equations are obtained as a function of optimization coefficients α,β,γ of the wind system, considering trajectories on cyclical curves and transmission by magnetic levitation, for the control, maintenance and reconfiguration of regenerative flow patterns. This allows us to conclude about the importance of designing remediation mechanisms such as vortex patterns from the control of outlet angles of the wind collector, in a commitment to obtain a sustainable system.

Downloads

Download data is not yet available.

References

Argatov, I., Rautakorpi, P., Silvennoinen, R. (2009). Estimation of the mechanical energy output of the kite wind generator. Renewable Energy, 34(6): 1525-1532. https://doi.org/10.1016/j.renene.2008.11.001

Itaipu. (2016). Atlas del potencial energético solar y eólico del Paraguay. Asunción: Parque Tecnológico Itaipu Binacional. https://www.ssme.gov.py/vmme/pdf/publicaciones/AtlaspotenenergSolarEolicoPy.pdf

Brandenberger, R. Graviton to photon conversion via parametric resonance. Physics of the Dark Universe, 2023, DOI. https://doi.org/10.1016/j.dark.2023.101202

Dou, B., Qu, T., Lei, L., & Zeng, P. (2020). Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model. Energy, 209, 118415. https://doi.org/10.1016/j.energy.2020.118415

González, A., & Hinojosa, J. (2019). Study of the influence of protuberances in the trailing edge of airfoils and determination of their aerodynamic efficiency through CFD using Ansys Fluent. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 35(3), 1-11. https://dialnet.unirioja.es/servlet/articulo?codigo=7058330

Li, Z., & Yang, X. (2021). Large-eddy simulation on the similarity between wakes of wind turbines with different yaw angles. Journal of Fluid Mechanics, 921, A11. DOI: https://doi.org/10.1017/jfm.2021.495

López, A. C., Parra, H. G., & Guacaneme, J. A. (2023). Análisis de torque en turbinas eólicas con generadores de vórtice y variaciones de temperatura mediante volúmenes finitos. Información tecnológica, 34(3), 11-20. http://dx.doi.org/10.4067/S0718-07642023000300011

Mansi, B., Nachiket, S., Sheikh, A., Sunny, K., & Kazi, F. (2021). Parameter Estimator based Feedback Linearization Control strategy of Magnetic Levitation System. In 2021 31st Australasian Universities Power Engineering Conference (AUPEC), 1-6. IEEE. https://doi.org/10.1109/AUPEC52110.2021.9597715

Matlab, 2023. Diseñar redes neuronales de retroalimentación NARX para series de tiempo aplicado a control de levitación magnética. Disponible en: https://la.mathworks.com/help/deeplearning/ug/design-time-series-narx-feedback-neural-networks.html

Ozbay, A., Tian, W., Yang, Z., & Hu, H. (2012). Interference of wind turbines with different yaw angles of the upstream wind turbine. In 42nd AIAA fluid dynamics conference and exhibit, 2719. https://doi.org/10.2514/6.2012-2719

Palacios-Pereira, F., & Ayala-Silva, M. E. (2023). Diseño de sistema de control de ángulo pitch en aerogeneradores mediante control pi adaptativo por lógica difusa. Revista Científica de la UCSA, 10(1), 91-114. https://doi.org/10.18004/ucsa/2409-8752/2023.010.01.091

Primero, M. F. L. Y., & Uziel, R. C. (2017). Modelo cinemático de reductor cicloidal magnético. Ingeniería Mecánica. Tecnología y Desarrollo, 6(1), 25-29. https://www.redalyc.org/articulo.oa?id=76854729004

Rivarolo, M., Freda, A., & Traverso, A. (2020). Test campaign and application of a small-scale ducted wind turbine with analysis of yaw angle influence. Applied Energy, 279, 115850. https://doi.org/10.1016/j.apenergy.2020.115850

Sandoval-Ruiz, C. (2023). Kirigami, estructuras geométricas fractales y ondas de luz. Revista REC Perspectiva, 21(1): 44-58. https://produccioncientificaluz.org/index.php/perspectiva/article/view/40438

Sandoval-Ruiz, C. (2023). Biomimética Aplicada a Modelos de Sistemas de Energías Renovables Reconfigurables, basados en Estructuras Autosimilares. Revista Técnica Facultad de Ingeniería Universidad del Zulia, 46(1): e234602. DOI: https://doi.org/10.22209/rt.v46a02

Sandoval-Ruiz, C. (2023). Modelo de optimización de arreglos de cometas captadoras de energías sostenibles. Revista Técnica de la Facultad de Ingeniería Universidad del Zulia, 46 (2).

Sandoval-Ruiz, C. (2022). Wind Turbine with Configurable Feedback Scheme for Minimal Environmental Impact and Maximum Efficiency. Revista UCT, 26(113), 123-136. https://doi.org/10.47460/uct.v26i113.578

Sandoval-Ruiz, C. (2021). Fractal Mathematical over Extended Finite Fields Fp[x]/(f(x)). Proyecciones Journal of Mathematics, 40(3): 731-742. https://doi.org/10.22199/issn.0717-6279-4322

Sandoval-Ruiz, C. (2021). Smart systems for the protection of ecosystems, flora and fauna. Revista UCT , 25(110): 138-154. https://doi.org/10.47460/uct.v25i110.486

Sandoval-Ruiz, C. (2021). Laboratorio de Energías Renovables y Aplicaciones Ambientales. Revista Ciencia e Ingeniería, 42(2): 169-178. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/17006

Sandoval-Ruiz, C. (2021). LFSR Optimization Model based on the Adaptive Coefficients method for ERNC Reconfigurable Systems. Ingeniare, 29(4): 743-766. http://dx.doi.org/10.4067/S0718-33052021000400743

Sandoval-Ruiz, C. (2020). Proyecto Cometa Solar - CS para optimización de Sistema Fotovoltaicos. Revista UCT, 24(100): 74-87. https://uctunexpo.autanabooks.com/index.php/uct/article/view/307/549

Sandoval-Ruiz, C. (2020). LFSR-Fractal ANN Model applied in R-IEDs for Smart Energy. IEEE Latin America Transactions, 18(4): 677-686. http://dx.doi.org/10.1109/TLA.2020.9082210

Sandoval-Ruiz, C. (2019). Modelo VHDL de Control Neuronal sobre tecnología FPGA orientado a Aplicaciones Sostenibles. Ingeniare, 27(3), 383-395. http://dx.doi.org/10.4067/S0718-33052019000300383

Sandoval, C., Velazco, K., & Díaz, J. (2008). Accionamiento eléctrico de sistemas dinámicos a través de criterios de control óptimo. Ingeniería e Investigación, 28(2), 66-71. https://www.redalyc.org/pdf/643/64328210.pdf

Vahidi, D., & Porté-Agel, F. (2022). A new streamwise scaling for wind turbine wake modeling in the atmospheric boundary layer. Energies, 15(24), 9477. http://dx.doi.org/10.3390/es15249477

Vizcaino, I. (2019). Rodamiento magnético aplicado a un aerogenerador de flujo axial.

Wu, H., Wang, Z., & Hu, Y. (2010). Study on magnetic levitation wind turbine for vertical type and low wind speed. In 2010 Asia-Pacific Power and Energy Engineering Conference (pp. 1-4). IEEE. https://ieeexplore.ieee.org/document/5448476

Yang, J., Wang, L., Song, D., Huang, C., Huang, L. y Wang, J. (2022). Incorporación de los impactos ambientales en el diagnóstico de cambio de punto cero del ángulo de guiñada de las turbinas eólicas. Energía, 238, 121762. https://doi.org/10.1016/j.energy.2021.121762

Zhang, Y., Li, Z., Liu, X., Sotiropoulos, F., & Yang, X. (2023). Turbulence in waked wind turbine wakes: Similarity and empirical formulae. Renewable Energy, 209, 27-41. http://dx.doi.org/10.1016/j.renene.2023.03.068

Zhang, X., et.al. (2021). Kirigami Engineering-Nanoscale Structures Exhibiting a Range of Controllable 3D Configurations. Advanced Materials, 33(5), 2005275. https://doi.org/10.1002/adma.202005275

Published

2023-11-04

How to Cite

Sandoval-Ruiz, C. (2023). YPR-alignment angles for wind energy harvesting kite arrangement: α,β,γ-coefficients for control and maintenance of regenerative flow patterns. Ucsa, 10(3), 3–15. https://doi.org/10.18004/ucsa/2409-8752/2023.010.03.003